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Abstract

A family of isolated sub-harmonic branches in nonlinear frequency response of piecewise linear system is examined in

this paper. Given their peculiarity, they could be easily overlooked in frequency response studies in numerical integration

or laboratory experiments when the quasi-static frequency sweeping technique is employed. An increase in the viscous

damping ratio could shrink the isolated branches and ultimately the sub-harmonic resonance may vanish. Asymmetry does

not appear to be the key factor that generates the isolated branches. Rather, the relationship between the linear mean

operating and transition point seems to dictate their occurrence.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Piecewise linear systems, with applications to geared systems and the like, have been widely studied over the
past decade. In particular, nonlinear frequency response characteristics have been investigated using
analytical, numerical and experimental approaches; Refs. [1–5] are typical citations. In addition to the primary
resonance, super- and sub-harmonic resonant peaks are also found. Recently, we [5] found a family of isolated
sub-harmonic branches for a mechanical oscillator with near pre-load nonlinearity (the stiffness of the first
stage is extremely high). Such solutions appear to posses interesting dynamic characteristics though sub-
harmonics could be harmful since most real-life devices are designed to operate away from the key
resonance(s). Tomlinson and Lam [6] and Ing et al. [7] have examined asymmetric clearance nonlinearity
problems but not the isolated sub-harmonic branches. Doole and Hogan [8] found isola in a piecewise linear
(bilinear) suspension bridge model. Recently, Takacs et al. [9] found that bifurcation branches of large
amplitude periodic motions could be isolated following an isola birth in a shimming wheel system (for certain
parameter regions). However, the occurrence of such isolated branches is yet to be understood. Accordingly,
this communication will conceptually examine the evolution of isolated sub-harmonic branches by using a
mechanical oscillator with an asymmetric piecewise nonlinearity as shown in Fig. 1a. The piecewise restoring
force in Fig. 1b is written as follows where a is the ratio between the first and second stage stiffness, b is the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. A single-degree-of-freedom oscillator with slight asymmetry in the clearance: (a) schematic of the system and (b) force–

displacement relationship.
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transition point (or clearance), e is the asymmetry in the first stage and geometrically, eob:

f ðxÞ ¼

x� ð1� aÞbþ ða� 1Þ�; xXðbþ �Þ;

ax; ð�bþ �Þpxoðbþ �Þ;
xþ ð1� aÞbþ ða� 1Þ�; xpð�bþ �Þ:

8><
>: (1)

We may write Eq. (1) in a simplified form using the signum (sgn) function as

f ðxÞ ¼ xþ
1� a
2
½ðx� bÞsgnðx� ðbþ �ÞÞ � ðxþ bÞsgnðx� ð�bþ �ÞÞ�

þ
ða� 1Þ�

2
½sgnðx� ðbþ �ÞÞ þ sgnðx� ð�bþ �ÞÞ�sgnðxÞ. (2)

Using Eq. (1) or (2), we write the governing equation of an oscillator under harmonic excitation as follows
in the dimensionless form:

€xþ 2z _xþ f ðxÞ ¼ F m þ F p sinðotÞ. (3)

Here, z is the damping ratio, Fm is the mean load (excitation) and Fp is the alternating force amplitude.
Further, b ¼ 1/a is presumed by normalizing Fm and Fp, thereby making the stiffness transition point coincide
with Fm ¼ 1.
2. Calculation of isolated sub-harmonic branches

The piecewise linear system of Eq. (3) can be solved in several ways. For instance, Pavlovskaia and
Wiercigroch [10] developed a periodic solution finder for an impact oscillator with a drift. The well-developed
numerical solver AUTO97 with path following function [11] could also be utilized. Nevertheless, we intend to
construct the frequency responses by using the semi-analytical multi-term harmonic balance method. This
method is a very efficient in generating results directly in the frequency domain while yielding some insight [5].
The multi-term harmonic balance method essentially seeks periodic responses that are represented by a
truncated Fourier series as shown below where u is the sub-harmonic index:

xðtÞ ¼ a0 þ
XNhu

n¼1

a2n�1 sin
n

u
ot

� �
þ a2n cos

n

u
ot

� �
�!

discretize
x ¼ D a , (4a)

f ðxÞ ¼ b0 þ
XNhu

n¼1

b2n�1 sin
n

u
ot

� �
þ b2n cos

n

u
ot

� �
�!

discretize
f ¼ D b . (4b)
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Here, D is the discrete inverse Fourier transform matrix:

D ¼

1 sin
n

u
ot0

� �
cos

n

u
ot0

� �
� � � cos

Nhu
u

ot0

� �

..

. ..
. ..

. ..
. ..

.

1 sin
n

u
otK�1

� �
cos

n

u
otK�1

� �
� � � cos

Nhu
u

otK�1

� �

2
6666664

3
7777775
. (5)

By matching the harmonic coefficients between the excitation (with coefficient Fm and Fp and denoted as p

in vector format) and responses, the numerical integration of Eq. (3) is transformed into an algebraic problem.
Then numerical continuation or path following technique is then employed to minimize the residue R where D

is a differentiator:

R ¼ o2D2 aþ2zoD aþ b� p . (6)

To ensure the minimization calculation following the deepest descent, Jacobian ðJÞ matrix has to be defined
(readers should refer to Ref. [4] for a more detailed discussion of the multi-term harmonic balance method and
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Fig. 2. Evolution of the sub-harmonic resonance for a piecewise linear system given a ¼ 0.25, Fp ¼ 0.5, z ¼ 0.02, e ¼ 0. Key: ddd, stable
multi-term harmonic balance method (MHBM) solution; � � � , unstable multi-term harmonic balance method solution.
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determination of stability):

J ¼
qR

q a
¼ o2D2 þ 2zoDþ

q b

q a
, (7a)

r a ¼ ak � akþ1 ¼ J�1 R . (7b)

Fig. 2a shows a typical sub-harmonic resonance evolution. It is clearly observed that as Fm moves closer to
the stiffness transition point, sub-harmonic resonance is excited. Duan et al. [5] have stated that as a special
case when Fm ¼ 1, even minimal effort could excite the sub-harmonic resonance. A closer look in Fig. 2b
reveals that the sub-harmonic resonance is indeed a closed branch isolated from the period-1 solution. Seydel
[12] has discussed a similar loci evolution for a fictitious model. He has explained that the transition from a
fully isolated to a continuous branch is attributed to the transcritical bifurcation. That is, there exists a range
1:1oF B

mo1:2 from which the isolated branch touches the period-1 locus. Nevertheless, the transcritical
bifurcation has never been regarded as a common phenomenon since it is rather hard to find it by numerical
simulation.
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Fig. 3. Multi-term harmonic balance method and numerical integration results given a ¼ 0.1, Fp ¼ 0.5, z ¼ 0.02 and e ¼ 0: (a) Fm ¼ 1.20

and (b) Fm ¼ 1.3. Key: ddd, stable multi-term harmonic balance method solution; � � � , unstable multi-term harmonic balance method

solution; BBB, numerical integration with downward sweep; JJJ, numerical integration with upward sweep.
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To validate the multi-term harmonic balance method results and to show that the isolated branch is not just
a numerical artifact, Fig. 3 presents the numerical integration results (based on the Runge–Kutta scheme).
First, both cases show a very good agreement between the numerical integration and multi-term harmonic
balance method solutions. Fig. 3a shows a typical jump phenomenon and the sub-harmonic resonance can be
easily solved with either multi-term harmonic balance method (employing the excitation perturbation
approach as proposed in an earlier paper [5]), or numerical integration. When an isolated branch occurs
as in Fig. 3b, system dynamics is obviously more complicated. Traditional numerical integration tends to
bypass the isolated resonant peak and thus the period-1 locus cannot jump to the period-2 branch.
Instead, one must exercise a massive search using many initial conditions to successfully latch on the
isolated branch. Since laboratory experiments tend to adopt frequency sweep technique (like the numerical
integration in a quasi-static manner), isolated peak could be easily overlooked unless its occurrence is
somehow known a priori. Algebraically, the isolated branch exists in a sub-space that cannot be spanned by
the period-1 Jacobian in the multi-term harmonic balance method or the predictor–corrector technique in
numerical integration.

3. Plausible cause and conclusion

First, we examine the effect of viscous damping ratio z on the isolated branches in Fig. 4. As expected, an
increase in z decreases the peak amplitude at the sub-harmonic resonance. The period-1 solutions under
various z values have minimal difference because the frequency regime is away from the primary resonance.
Further, we also observe that the isolated branch shrinks as z increases and it migrates away from the period-1
solution. The isolated branch disappears when z ¼ 8% and then the sub-harmonic resonance disappears from
the nonlinear frequency response plots.

By varying the value of e, while keeping the other system parameters and excitation unchanged, the system
switches from symmetric to asymmetric response. Fig. 5a shows sub-harmonic response for e ¼ 0.05b. Similar
to the symmetric case in Fig. 3b, isolated branches occur again. As e is further increased to 0.10b, isolated
branches degenerates to a continuous curve in Fig. 5b. Nevertheless, an examination of maximum and
minimum responses reveals that the system still experiences the single-side impact condition in both cases. This
implies that the response only crosses the positive transition (xc+ ¼ b+e) and no crossing of the negative
transition (xc� ¼ �b+e) occurs. Therefore, the system asymmetry (as shown in Fig. 1a) alone does not
generate any isolated branches. Revisiting the results in Fig. 3, we would rather postulate that it is the relative
position between the external excitation and the transition that could be the root cause of an isolated branch.
To verify this, we decrease Fm to 1.2. This makes the distance between the linear mean operating
(xm0 ¼ Fm�(b+e)a) and positive transition equal to the asymmetric case. Now we find in Fig. 3a that the
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Fig. 4. Effect of viscous damping ratio z on the isolated sub-harmonic branch given a ¼ 0.25, Fm ¼ 1.20, Fp ¼ 0.5 and e ¼ 0.

Key: ddd, stable multi-term harmonic balance method solution; � � � , unstable multi-term harmonic balance method solution.
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Fig. 5. Effect of asymmetry on the isolated sub-harmonic branch given a ¼ 0.1, Fm ¼ 1.3, Fp ¼ 0.5 and z ¼ 0.02: (a) e ¼ 0.05b and (b)
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solution.
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isolated branch fades back to a smooth curve connecting with the period-1 solution. Further work in this area
is suggested especially when two or more clearances are present in a system.
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